Zero-Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence

ACS Appl Mater Interfaces. 2022 May 18;14(19):22332-22340. doi: 10.1021/acsami.2c02623. Epub 2022 May 5.

Abstract

Blue-emitting organic light-emitting diodes (OLEDs) fall significantly behind other OLEDs in operational stability. To better understand the key factors governing the stability of blue OLEDs employing thermally activated delayed fluorescence (TADF), nine efficient sky-blue to green TADF emitters with different frontier orbital energy levels and different TADF lifetimes have been designed and synthesized on the basis of charge-transfer (CT) acridine/phenyltriazine derivatives. Among them, ToDMAC-TRZ, a molecule composed of a 9,9-dimethyl-2,7-di-o-tolyl-9,10-dihydroacridine donor and a 2,4,6-triphenyl-1,3,5-triazine acceptor, shows a quantum yield of nearly 1 and a TADF lifetime as short as 0.59 μs in thin film. However, the stability of OLEDs is independent of the frontier orbital energy levels and TADF lifetime of the emitter. In contrast, the device half-life is found to decrease by five-sixths as the 0-0 energy of the singlet excitons increases by about 0.06 eV, which can be well-explained by the Arrhenius equation employing a photoreaction model. Whether in photoluminescence or electroluminescence, the contribution of long-lifetime triplet excitons to degradation is much lower than expected, which can be accounted for by how the solid-state solvation effect reduces the energy of the 3CT state and how most molecules have a low-lying locally excited triplet state.

Keywords: activation energy; blue organic light emitting diode; degradation; thermally activated delayed fluorescence; zero−zero energy.