A novel fabrication technique for high-aspect-ratio nanopillar arrays for SERS application

RSC Adv. 2020 Dec 21;10(73):45037-45041. doi: 10.1039/d0ra09145f. eCollection 2020 Dec 17.

Abstract

A novel technique is demonstrated for the fabrication of silicon nanopillar arrays with high aspect ratios. Our technique leverages on an "antenna effect" present on a chromium (Cr) hard mask during ion-coupled plasma (ICP) etching. Randomly distributed sharp tips around the Cr edge act as antennas that attract etchant ions, which in turn enhance the etching of the Cr edge. This antenna effect leads to a smaller Cr mask size and thus a smaller nanopillar diameter. With optimized SF6 and CHF3 gas flow during ICP etching, we could achieve nanopillar arrays with sub-30 nm diameter, over 20 aspect ratio, and steep sidewall without collapse. The proposed technique may help break the limit of traditional nanopillar array fabrication, and be applied in many areas, such as Surface-Enhanced Raman Scattering (SERS). A series of SERS simulations performed on nanopillar arrays fabricated by this technique show an obvious Raman spectrum intensity enhancement. This enhancement becomes more obvious when the diameter of the nanopillar becomes smaller and the aspect ratio becomes higher, which may be explained by a high light absorption, the lightning-rod effect, and a greater number of free electrons available at the surface due to the higher density of the surface state.