SEZ6L2, regulated by USF1, accelerates the growth and metastasis of breast cancer

Exp Cell Res. 2022 Aug 1;417(1):113194. doi: 10.1016/j.yexcr.2022.113194. Epub 2022 May 4.

Abstract

Breast cancer (BC) is the second cause of cancer-related mortality in women. Seizure related 6 homolog like 2 (SEZ6L2), a protein presented on cell surface, is involved in tumor development. It was found to be highly expressed in BC, however, its role in BC remains unclear. Herein, we aimed to explore the role of SEZ6L2 in BC. Firstly, the correlationship between SEZ6L2 expression and the clinic pathological characteristics of patients diagnosed with BC was analyzed. Subsequently, the role of SEZ6L2 was further explored using MTT, transwell invasion, flow cytometry, colony formation and wound healing assays. The result showed that the level of SEZ6L2 was remarkably correlated with the TNM stage, HER-2 status and lymph node metastasis of BC. Knockdown of SEZ6L2 significantly suppressed the proliferation of BC cells and induced cell cycle arrest at G1 phase. In addition, SEZ6L2 knockdown repressed their migration and invasion. On the contrary, SEZ6L2 overexpression performed the opposite effects. Furthermore, SEZ6L2 also accelerated the in vivo tumorigenesis of BC cells. Additionally, according to bioinformatics resources, we identified upstream transcription factor 1 (USF1) as a transcriptional factor which bound to the promoter of SEZ6L2 and positively regulated its transcription. In conclusion, this study demonstrated that SEZ6L2 was transcriptionally regulated by USF1 and was involved in the growth and metastasis of BC cells. Revealing the role of SEZ6L2 in BC provides additional knowledge for the pathogenesis of BC, which may benefit to BC therapy.

Keywords: Breast cancer; Metastasis; Proliferation; SEZ6L2; USF1.

MeSH terms

  • Breast Neoplasms* / metabolism
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Female
  • Gene Expression Regulation, Neoplastic / genetics
  • Humans
  • Membrane Proteins / metabolism
  • MicroRNAs*
  • Upstream Stimulatory Factors / metabolism

Substances

  • Membrane Proteins
  • MicroRNAs
  • SEZ6L2 protein, human
  • USF1 protein, human
  • Upstream Stimulatory Factors