Background: Autonomic dysfunction has been implicated in the pathophysiology of the Sudden Infant Death Syndrome (SIDS). Butyrylcholinesterase (BChE) is an enzyme of the cholinergic system, a major branch of the autonomic system, and may provide a measure of autonomic (dys)function. This study was undertaken to evaluate BChE activity in infants and young children who had died from Sudden Infant Death or Sudden Unexpected Death.
Methods: In this case-control study we measured BChE activity and total protein in the eluate of 5μL spots punched from the dried blood spots taken at birth as part of the newborn screening program. Results for each of 67 sudden unexpected deaths classified by the coroner (aged 1 week-104 weeks) = Cases, were compared to 10 date of birth - and gender-matched surviving controls (Controls), with five cases reclassified to meet criteria for SIDS, including the criterion of age 3 weeks to 1 year.
Findings: Conditional logistic regression showed that in groups where cases were reported as "SIDS death" there was strong evidence that lower BChE specific activity (BChEsa) was associated with death (OR=0·73 per U/mg, 95% CI 0·60-0·89, P=0·0014), whereas in groups with a "Non-SIDS death" as the case there was no evidence of a linear association between BChEsa and death (OR=1·001 per U/mg, 95% CI 0·89-1·13, P=0·99).
Interpretation: BChEsa, measured in dried blood spots taken 2-3 days after birth, was lower in babies who subsequently died of SIDS compared to surviving controls and other Non-SIDS deaths. We conclude that a previously unidentified cholinergic deficit, identifiable by abnormal -BChEsa, is present at birth in SIDS babies and represents a measurable, specific vulnerability prior to their death.
Funding: All funding provided by a crowd funding campaign https://www.mycause.com.au/p/184401/damiens-legacy.
Keywords: Arousal; Autonomic function; Butyrylcholinesterase; Cholinergic deficit; Sudden Infant Death Syndrome; Sudden Unexpected Death in Infancy.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.