Laser-Fabricated 2D Molybdenum Disulfide Electronic Sensor Arrays for Rapid, Low-Cost, Ultrasensitive Detection of Influenza A and SARS-Cov-2

Adv Mater Interfaces. 2022 Jun 22;9(18):2102209. doi: 10.1002/admi.202102209. Epub 2022 Mar 7.

Abstract

Multiplex electronic antigen sensors for detection of SARS-Cov-2 spike glycoproteins and hemagglutinin from influenza A are fabricated using scalable processes for straightforward transition to economical mass-production. The sensors utilize the sensitivity and surface chemistry of a 2D MoS2 transducer for attachment of antibody fragments in a conformation favorable for antigen binding with no need for additional linker molecules. To make the devices, ultra-thin layers (3 nm) of amorphous MoS2 are sputtered over pre-patterned metal electrical contacts on a glass chip at room temperature. The amorphous MoS2 is then laser annealed to create an array of semiconducting 2H-MoS2 transducer regions between metal contacts. The semiconducting crystalline MoS2 region is functionalized with monoclonal antibody fragments complementary to either SARS-CoV-2 S1 spike protein or influenza A hemagglutinin. Quartz crystal microbalance experiments indicate strong binding and maintenance of antigen avidity for antibody fragments bound to MoS2. Electrical resistance measurements of sensors exposed to antigen concentrations ranging from 2-20 000 pg mL-1 reveal selective responses. Sensor architecture is adjusted to produce an array of sensors on a single chip suited for detection of analyte concentrations spanning six orders of magnitude from pg mL-1 to µg mL-1.

Keywords: 2D materials; COVID‐19; MoS 2; SARS‐Cov‐2; antigen test; coronavirus; electronic sensors.