Background: Epidemiological studies suggest that exposure to p,p'-dichloro-diphenyl-trichloroethane (p,p'-DDT) is associated with poorer cognitive function in children and adolescents, but the neural mechanisms underlying this association remain unclear.
Objective: We investigated associations of prenatal and childhood exposure to p,p'-DDT and its metabolite p,p'-dichloro-diphenyl-dichloroethylene (p,p'-DDE) with cortical activation in adolescents using functional near-infrared spectroscopy (fNIRS).
Methods: We administered fNIRS to 95 adolescents from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) aged 15-17 years. We assessed cortical activity in the frontal, temporal, and parietal brain regions while participants completed tasks of executive function, language comprehension, and social cognition. We measured serum p,p'-DDT and -DDE concentrations at age 9 years and then estimated exposure-outcome associations using linear regression models adjusted for sociodemographic characteristics. In secondary analyses, we back-extrapolated prenatal concentrations using prediction models and examined their association with cortical activation.
Results: Median (P25-P75) p,p'-DDT and -DDE concentrations in childhood were 1.4 (1-2.3) and 141.5 (75.0-281.3) ng/g lipid, respectively. We found that childhood exposure to p,p'-DDT and -DDE was associated with altered patterns of brain activation during tasks of cognition and executive functions. For example, we observed increased activity in the left frontal lobe during a language comprehension task (β per 10 ng/g lipid increase of serum p,p'-DDE at age 9 years = 3.4; 95% CI: 0.0, 6.9 in the left inferior frontal lobe; and β = 4.2; 95% CI: 0.9, 7.5 in the left superior frontal lobe). We found no sex differences in the associations of childhood p,p'-DDT and -DDE concentrations with neural activity. Associations between prenatal p,p'-DDT and p,p'-DDE concentrations and brain activity were similar to those observed for child p,p'-DDT and -DDE concentrations.
Conclusions: Childhood p,p'-DDT and -DDE exposure may impact cortical brain activation, which could be an underlying mechanism for its previously reported associations with poorer cognitive function.
Keywords: Cohort studies; Neuroimaging; Pesticide exposure.
Copyright © 2022 Elsevier Inc. All rights reserved.