Due to the lack of nano descriptors that can appropriately represent the wide chemical space of engineered nanomaterials (ENMs), applicability domain of nano-quantitative structure-activity relationship models are limited to certain types of ENMs, such as metal oxides, metals, carbon-based nanomaterials, or quantum dots. In this study, a size-dependent electron configuration fingerprint (SDEC FP) was introduced to estimate the quantity of electrons based on the core, doping, and coating materials of ENMs in different sizes. SDEC FP was used in prediction model development and nanostructure similarity analysis on datasets including metal and carbon-based nanomaterials with and without surface modifications. Cytotoxicity and zeta potential prediction models developed with SDEC FP achieved good prediction accuracies on test set. Nanostructure similarity analysis was performed through principal component analysis which showed that structural similarity between ENMs measured by SDEC FP was highly correlated with their properties.
Keywords: Computational nanotoxicology; Nano-QSAR; Nanodescriptor; Nanoinformatics; Zeta potential prediction.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.