The use of cell-based reporter systems has provided valuable insights into the molecular mechanisms of integrin activation. However, current models have significant drawbacks because their artificially expressed integrins cannot be regulated by either physiological stimuli or endogenous signaling pathways. Here, we report the generation of a Hoxb8 cell line expressing human β2 integrin that functionally replaced the deleted mouse ortholog. Hoxb8 cells are murine hematopoietic progenitor cells that can be efficiently differentiated into neutrophils and macrophages resembling their primary counterparts. Importantly, these cells can be stimulated by physiological stimuli triggering classical integrin inside-out signaling pathways, ultimately leading to β2 integrin conformational changes that can be recorded by the conformation-specific antibodies KIM127 and mAb24. Moreover, these cells can be efficiently manipulated via the CRISPR/Cas9 technique or retroviral vector systems. Deletion of the key integrin regulators talin1 and kindlin3 or expression of β2 integrins with mutations in their binding sites abolished both integrin extension and full activation regardless of whether only one or both activators no longer bind to the integrin. Moreover, humanized β2 integrin Hoxb8 cells represent a valuable new model for rapidly testing the role of putative integrin regulators in controlling β2 integrin activity in a physiological context.
Keywords: Hoxb8 cells; KIM127; kindlin3; mAb24; talin1; β2 integrin activation.