Dihydrouracil presents a crucial intermediate in the catabolism of uracil. The vital importance of uracil and its nucleoside, uridine, encourages scientists to synthesize novel dihydrouracils. In this paper, we present an innovative, fast, and effective method for the synthesis of dihydrouracils. Hence, under mild conditions, 3-chloroperbenzoic acid was used to cleave the carbon-sulfur bond of the Biginelli hybrids 5,6-dihydropyrimidin-4(3H)-ones. This approach led to thirteen novel dihydrouracils synthesized in moderate-to-high yields (32-99%).
Keywords: Biginelli hybrid; dihydrouracil; m-chloroperbenzoic acid; synthesis; tetrahydropyrimidine.