Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source of the MCC, the present study investigates the extraction and characterization of MCC from the pedicle of Lagenaria siceraria fruits. The MCC was extracted by sequentially treating pedicles with water, alkali, bleaching (sodium chlorite), and dilute sulfuric acid (acid hydrolysis). The removal of associated impurities from pedicle fibers was confirmed by Fourier transform infrared analyses. The extracted MCC exhibited a characteristic crystalline structure of cellulose in X-ray diffraction with a 64.53% crystallinity index. The scanning electron microscopy (SEM) showed the variation in the morphology of the fibers and the formation of MCC of approximately 100 µm. The thermogravimetric analysis (TGA) indicated higher thermal stability of MCC. MCC production from biowaste (pedicle) holds potential for application as an emulsifier, stabilizer, and thickener in the chemical, pharmaceutical, and food industries.
Keywords: Lagenaria siceraria pedicles; biowaste utilization; microcrystalline cellulose; renewable resources.