Acaricidal, Larvacidal, and Repellent Activity of Elettaria cardamomum Essential Oil against Hyalomma anatolicum Ticks Infesting Saudi Arabian Cattle

Plants (Basel). 2022 Apr 30;11(9):1221. doi: 10.3390/plants11091221.

Abstract

Background: In this experimental study, we aimed to assess the acaricidal effects of Elettaria cardamomum L. essential oil (ECEO) against Hyalomma anatolicum tick in cattle from Saudi Arabia. Methods: Gas chromatography-mass spectrometry (GC-MS) was performed to identify the chemical composition of ECEO. The acaricidal, larvicidal, and repellent activity of ECEO against H. anatolicum was studied through the adult immersion test (AIT), the larval packet test (LPT), the vertical movement behavior of tick’s larvae technique, anti-acetylcholinesterase (AChE) activity, and oxidative enzyme activity. Results: By GC/MS, the most compounds were 1,8-cineole (34.3%), α-terpinyl acetate (23.3%), and α-pinene (17.7%), respectively. ECEO significantly (p < 0.001) increased the mortality rate as a dose-dependent response. After ECEO Treatment, number of eggs, egg weight, and hatchability significantly declined as a dose-dependent response. ECEO at concentrations of 5 µL/mL and above completely killed the larva. The LC50 and LC90 values for ECEO were 1.46 and 2.68 µL/mL, respectively. ECEO at concentrations of 10, 20, and 40 µL/mL showed 100% repellency activity up to 60, 120, and 360 min incubation, respectively. ECEO, especially at ½ LC50 and LC50, significantly inhibited GST and AChE activities of H. anatolicum larvae compared to the control group. Conclusions: We found promising adulticidal, larvicidal, and repellent effects of ECEO against H. anatolicum as a vector of theileriosis in Saudi Arabia. We also found that ECEO displayed these activities through inhibiting AChE and GST. Nevertheless, additional investigations are required to confirm the accurate mechanisms and the relevance of ECEO in practical application.

Keywords: Hyalomma anatolicum; acetylcholinesterase; glutathione; herbal medicines; oxidative enzyme; tick.