With the advent of next-generation sequencing (NGS), monogenic forms of common variable immunodeficiency (CVID) have been increasingly described. Our study aimed to identify disease-causing variants in a Western Australian CVID cohort using a novel targeted NGS panel. Targeted amplicon NGS was performed on 22 unrelated subjects who met the formal European Society for Immunodeficiencies-Pan-American Group for Immunodeficiency diagnostic criteria for CVID and had at least one of the following additional criteria: disease onset at age <18 years, autoimmunity, low memory B lymphocytes, family history, and/or history of lymphoproliferation. Candidate variants were assessed by in silico predictions of deleteriousness, comparison to the literature, and classified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology criteria. All detected genetic variants were verified independently by an external laboratory, and additional functional studies were performed if required. Pathogenic or likely pathogenic variants were detected in 6 of 22 (27%) patients. Monoallelic variants of uncertain significance were also identified in a further 4 of 22 patients (18%). Pathogenic variants, likely pathogenic variants, or variants of uncertain significance were found in TNFRSF13B, TNFRSF13C, ICOS, AICDA, IL21R, NFKB2, and CD40LG, including novel variants and variants with unexpected inheritance pattern. Targeted amplicon NGS is an effective tool to identify monogenic disease-causing variants in CVID, and is comparable or superior to other NGS methods. Moreover, targeted amplicon NGS identified patients who may benefit from targeted therapeutic strategies and had important implications for family members.
Crown Copyright © 2022. Published by Elsevier Inc. All rights reserved.