The emergence of drug-resistant bacteria is a precarious global health concern. In this study, surface-enhanced Raman spectroscopy (SERS) is used to characterize colistin-resistant and susceptible E. coli strains based on their distinguished SERS spectral features for the development of rapid and cost-effective detection and differentiation methods. For this purpose, three colistin-resistant and three colistin susceptible E. coli strains were analyzed by comparing their SERS spectral signatures. Moreover, multivariate data analysis techniques including Principal component analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were used to examine the SERS spectral data of colistin-resistant and susceptible strains. PCA technique was employed for differentiating colistin susceptible and resistant E.coli strains due to alteration in biochemical compositions of the bacterial cell. PLS-DA is employed on SERS spectral data sets for discrimination of these resistant and susceptible E. coli strains with 100% specificity, 100% accuracy, 99.8% sensitivity, and 86% area under receiver operating characteristics (AUROC) curve.
Keywords: Bacterial strains discrimination; Colistin-resistant; Escherichia coli; Partial least square discriminant analysis; Principal component analysis; Surface-enhanced Raman spectroscopy.
Copyright © 2022 Elsevier B.V. All rights reserved.