Plant litter decomposition is a key process for carbon (C) turnover in terrestrial ecosystems. Sunlight has been shown to cause and accelerate C release in semiarid ecosystems, yet the dose-response relationships for these effects have not been evaluated. We conducted a two-phase experiment where plant litter of three species was subjected to a broad range of cumulative solar radiation (CSR) exposures under field conditions. We then evaluated the relationships between CSR exposure and abiotic mass loss, litter quality and the subsequent biotic decomposition and microbial activity in litter. Dose-response relationships demonstrated that CSR exposure was modestly correlated with abiotic mass loss but highly significantly correlated with lignin degradation, saccharification, microbial activity and biotic decay of plant litter across all species. Moreover, a comparison of these dose-response relationships suggested that small reductions in litter lignin due to exposure to sunlight may have large consequences for biotic decay. These results provide strong support for a model that postulates a critical role for lignin photodegradation in the mechanism of photofacilitation and demonstrate that, under natural field conditions, biotic degradation of plant litter is linearly related with the dose of solar radiation received by the material before coming into contact with decomposer microorganisms.
Keywords: carbon cycle; lignin; photodegradation; photofacilitation; plant litter decomposition; solar radiation; sunlight; terrestrial ecosystems.
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.