Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation

Front Immunol. 2022 May 3:13:886213. doi: 10.3389/fimmu.2022.886213. eCollection 2022.

Abstract

Cytokines are crucial molecules for maintaining the proper functioning of the immune system. Nevertheless, a dysregulation of cytokine expression could be involved in the pathogenesis of autoimmune diseases. Interleukin (IL)-15 is a key factor for natural killer cells (NK) and CD8 T cells homeostasis, necessary to fight cancer and infections but could also be considered as a pro-inflammatory cytokine involved in autoimmune inflammatory disease, including rheumatoid arthritis, psoriasis, along with tumor necrosis factor alpha (TNF-α), IL-6, and IL-1β. The molecular mechanisms by which IL-15 exerts its inflammatory function in these diseases are still unclear. In this study, we generated an IL-15-derived molecule called NANTIL-15 (New ANTagonist of IL-15), designed to selectively inhibit the action of IL-15 through the high-affinity trimeric IL-15Rα/IL-2Rβ/γc receptor while leaving IL-15 signaling through the dimeric IL-2Rβ/γc receptor unaffected. Administrating of NANTIL-15 in healthy mice did not affect the IL-15-dependent cell populations such as NK and CD8 T cells. In contrast, we found that NANTIL-15 efficiently reduced signs of inflammation in a collagen-induced arthritis model. These observations demonstrate that the inflammatory properties of IL-15 are linked to its action through the trimeric IL-15Rα/IL-2Rβ/γc receptor, highlighting the interest of selectively targeting this receptor.

Keywords: IL-2; homeostasis; inhibition; interleukin; receptor.

MeSH terms

  • Animals
  • Cytokines
  • Inflammation / drug therapy
  • Interleukin-15 Receptor alpha Subunit* / metabolism
  • Interleukin-15*
  • Killer Cells, Natural
  • Mice

Substances

  • Cytokines
  • Interleukin-15
  • Interleukin-15 Receptor alpha Subunit