A representative transition metal oxide (TMO), CoMn2O4 (CMO), is recognized as an effective peroxymonosulfate (PMS) activator with disadvantages like limited reactive sites and metal leakage. Herein, novel catalysts were synthesized by anchoring CMO on kaolinite (Kln) and halloysite (Hal) matrixes, two natural clay minerals with lamellar and tubular structures, for PMS activation in pharmaceutical degradation. Hal and Kln helped to control the crystallinity of CMO spontaneously with induce oxygen vacancies (OVs), which significantly enhanced the working efficiency. The reaction rate constants of Hal/CMO and Kln/CMO towards OFX degradation were nearly triple and twice that of bare CMO, respectively, with a 60% decrease in metal usage. The formation of OVs provided additional active sites for the reaction and accelerated the electron transfer. CMO/Hal and CMO/Kln exhibited better stability and durability than CMO, while CMO/Kln showed higher structural stability with lower metal leaching after 3 rounds of reaction. The higher crystallinity of CMO/Kln resulted in less OVs, but higher structural stability. The universal applicability of CMO/Hal and CMO/Kln were verified by using three other pharmaceuticals as probes. This work shed light on the modification of TMO catalysts by introducing clay mineral substrates for the efficient and ecofriendly remediation of pharmaceuticals in wastewater.
Keywords: Halloysite; Kaolinite; Oxygen vacancies; Peroxymonosulfate activation; Pharmaceutical degradation.
Copyright © 2022 Elsevier B.V. All rights reserved.