Tirapazamine (TPZ) is a promising hypoxia-selective cytotoxic agent that may exert synergistic tumor-killing activity with transcatheter arterial embolization (TAE) for liver cancer. To investigated whether TPZ-loaded microspheres enhance the synergy between TPZ and TAE in liver cancer, we prepared TPZ-loaded CalliSpheres microspheres (CSMTPZs) and characterized their properties as a chemoembolization agent in vitro. Tumor hypoxia after TAE was detected in the rabbit VX2 model of liver cancer using a modified Clark-type microelectrode research system. CSMTPZ therapy was performed in the animal model. The plasma and tumor concentrations of TPZ and its metabolites were measured, and the efficacy and safety of CSMTPZ therapy were evaluated and compared with those of the conventional combination of intraarterial TPZ injection and embolization. The results showed that CSMTPZs displayed favorable in vitro properties including drug loading and release and microsphere size, shape, and surface profiles. TAE induced acute tumor hypoxia, but residual tumor cells responded to hypoxia through hypoxia-inducible factor 1α. CSMTPZ therapy improved TPZ delivery into tumor tissue with minimal systemic exposure. Accordingly, CSMTPZ therapy exhibited advantages in terms of hypoxia-selected cytotoxicity, tumor apoptosis and necrosis, animal survival, and safety over the conventional combination of TPZ and TAE. We revealed the improved synergistic anti-tumor effects of CSMTPZ therapy in the rabbit VX2 liver cancer model. Our data support the clinical evaluation of CSMTPZs in the treatment of hepatocellular carcinoma, and CSMTPZ administration might serve as a successful therapeutic strategy for this malignancy.
Keywords: CalliSpheres microspheres; Hepatocellular carcinoma; Tirapazamine; Transcatheter arterial embolization.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.