Tumor-associated macrophages (TAMs) have protumor functions in various cancers. However, their significance in hepatoblastoma, the most common liver tumor in children, remains unclear. The aim of this study was to explore the potential roles of TAMs in hepatoblastoma. Immunohistochemical analysis revealed that the density of CD204-positive TAMs was significantly higher in the embryonal component than in other histological subtypes of hepatoblastoma. An in vitro co-culture study with Huh6 cells and human monocyte-derived macrophages (HMDMs) showed that macrophage-colony-stimulating factor receptor (M-CSFR) was strongly up-regulated in the Huh6 cells that were directly co-cultured with HMDMs. The expressions of M-CSFR ligands (interleukin-34 and M-CSF) were also increased by co-culture with HMDMs. The proliferation of HepG2 cells (another hepatoblastoma cell line expressing M-CSFR) was inhibited by an M-CSFR inhibitor. M-CSFR was found to be highly expressed in the embryonal component and in recurrent lesions. The number of CD204-positive macrophages was also higher in the M-CSFR-positive areas than in the M-CSFR-negative areas. Thus, M-CSFR expression appeared to be induced by cell-cell contact with macrophages in hepatoblastoma cells, and M-CSFR inhibitor is potentially effective against M-CSFR-positive hepatoblastoma, especially recurrent cases.
Keywords: Embryonal; Fetal; Hepatoblastoma; M-CSFR; Macrophage.
© 2022. The Author(s) under exclusive licence to The Japanese Society for Clinical Molecular Morphology.