ADataViewer: exploring semantically harmonized Alzheimer's disease cohort datasets

Alzheimers Res Ther. 2022 May 21;14(1):69. doi: 10.1186/s13195-022-01009-4.

Abstract

Background: Currently, Alzheimer's disease (AD) cohort datasets are difficult to find and lack across-cohort interoperability, and the actual content of publicly available datasets often only becomes clear to third-party researchers once data access has been granted. These aspects severely hinder the advancement of AD research through emerging data-driven approaches such as machine learning and artificial intelligence and bias current data-driven findings towards the few commonly used, well-explored AD cohorts. To achieve robust and generalizable results, validation across multiple datasets is crucial.

Methods: We accessed and systematically investigated the content of 20 major AD cohort datasets at the data level. Both, a medical professional and a data specialist, manually curated and semantically harmonized the acquired datasets. Finally, we developed a platform that displays vital information about the available datasets.

Results: Here, we present ADataViewer, an interactive platform that facilitates the exploration of 20 cohort datasets with respect to longitudinal follow-up, demographics, ethnoracial diversity, measured modalities, and statistical properties of individual variables. It allows researchers to quickly identify AD cohorts that meet user-specified requirements for discovery and validation studies regarding available variables, sample sizes, and longitudinal follow-up. Additionally, we publish the underlying variable mapping catalog that harmonizes 1196 unique variables across the 20 cohorts and paves the way for interoperable AD datasets.

Conclusions: In conclusion, ADataViewer facilitates fast, robust data-driven research by transparently displaying cohort dataset content and supporting researchers in selecting datasets that are suited for their envisioned study. The platform is available at https://adata.scai.fraunhofer.de/ .

Keywords: Alzheimer’s disease; Cohort study; Data curation; Data harmonization; Dementia; Interoperability; MRI; Semantic mapping; Variable catalog.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease*
  • Artificial Intelligence
  • Cohort Studies
  • Humans
  • Sample Size