Two environmental parameters, temperature and light intensity, were independently used as stress modulators to enhance eicosapentaenoic acid (EPA) production by the microalga Nannochloropsis oculata, without hindering biomass production. A sinusoidal approach was used, as environmental conditions were alternated between optimum and stress status in multi-day cycles. Low temperatures (5 and 10 °C) and light intensities (30 and 50 μmol photons/m2/s) were tested. Results revealed that the modulated stress approach used was able to avoid decreases in biomass production. Temperature stress (10 °C) presented the highest impact, increasing EPA content to 12.8 mgEPA/L, 158% more than the amount obtained in optimum (non-modulated) growth conditions at that point in time, while the lower light intensity stress was able to increase to 126% more. It is important to point out that in both cases increases in EPA amounts resulted from increased content in each individual cell and not just from increased biomass contents. KEY POINTS: • Temperature stress (10 °C) presented the highest impact increasing EPA content 158% • Lower light intensity stress was able to increase EPA to 126% more • EPA increased in individual cell contents simultaneous with biomass increase.
Keywords: Abiotic factors; Light intensity; Microalgae; Omega-3 polyunsaturated fatty acids; Temperature.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.