Tetramerization of ethylene by chromium catalysts stabilized with functionalized N-aryl phosphineamine ligands C6H4(m-CF3)N(PPh2)2 (1), C6H4(p-CF3)N(PPh2)2 (2), C6H4(o-CF3)N=PPh2-PPh2 (3), and C6H3(3,5-bis(CF3))N(PPh2)2 (4) was evaluated. The parameter optimization includes temperature, co-catalyst, and solvent. Upon activation with MMAO-3A, the new catalyst system especially with m-functional PNP ligand (1) exhibited high 1-octene selectivity and productivity while giving minimum undesirable polyethylene and C10 + olefin by-products. Using PhCl as a solvent at 75 °C led to a remarkable α-olefin (1-C6 + 1-C8) selectivity (>90 wt %) at a reaction rate of 2000 kg·gCr -1·h-1. Under identical conditions, analogous PNP ligands bearing -CH3, -Et, and -Cl functional moieties at the meta position of the N-phenyl ring displayed significantly lower reactivity. The catalyst with p-functional ligand (2) exhibited lower activity and comparable selectivities, while the Cr/PPN (with ligand 3) system gave no noticeable reactivity. The molecular structure of the precatalyst (1-Cr), exhibiting a monomeric structural feature, was elucidated with the aid of single-crystal X-ray diffraction study.
© 2022 The Authors. Published by American Chemical Society.