Ticks are significant ectoparasites of animals and humans. Published data indicate that most vectors that transmit livestock and human pathogens in sub-Saharan Africa, are native to the region and originate from wild animals. Currently, there is a paucity of information on the role of wild animals on the epidemiology of zoonotic tick-borne pathogens in South Africa. This systematic review focuses on the distribution of ticks and prevalence of tick-borne pathogens in different wild animals in South Africa to identify potential reservoir hosts and possible hotspots for emergence of novel tick-borne pathogens. Following several screening processes, 38 peer-reviewed studies published from 1970 to 2021, were deemed eligible. The studies reported on ticks collected from 63 host species of 21 host families, mostly Canidae, Felidae, Bovidae and Muridae. A total of 49 tick species of nine genera, i.e. Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, Margaropus, Nuttalliella, Rhipicentor and Rhipicephalus, were reported. Nine tick species, i.e. Amblyomma marmoreum, Am. hebraeum, Haemaphysalis elliptica, Hyalomma truncatum, I. rubicundus, Rh. appendiculatus, Rh. (B.) decoloratus, Rh. evertsi evertsi and Rh. simus were the most commonly reported. Pathogens of the genera Anaplasma, Babesia, Hepatozoo n and Theileria were identified in the wild animals. This review provides more insight on the ecology of ticks and tick-borne pathogens of wild animals in South Africa and gives useful information for predicting their future spread. It also demonstrates that wild animals habour a diverse range of tick species. This level of diversity entails a similarly high potential for emergence of novel tick-borne pathogens. The review further indicates that wild animals in South Africa are sentinels of tick-borne protozoans of veterinary importance and some bacterial pathogens as most ticks they habour are known vectors of pathogens of domestic animals and humans. However, studies on potential tick-borne zoonoses are under-represented and should be included in future epidemiological surveys, especially in the light of climate change and other anthropogenic threats which might result in the emergence of novel tick-borne pathogens.
Keywords: Prevalence; South Africa; Tick-borne pathogens; Ticks; Wild animals.
© 2022 The Authors.