Discovering Key Topics in Emergency Medical Dispatch from Free Text Dispatcher Observations

Stud Health Technol Inform. 2022 May 25:294:859-863. doi: 10.3233/SHTI220607.

Abstract

The objective of this work was to discover key topics latent in free text dispatcher observations registered during emergency medical calls. We used a total of 1374931 independent retrospective cases from the Valencian emergency medical dispatch service in Spain, from 2014 to 2019. Text fields were preprocessed to reduce vocabulary size and filter noise, removing accent and punctuation marks, along with uninformative and infrequent words. Key topics were inferred from the multinomial probabilities over words conditioned on each topic from a Latent Dirichlet Allocation model, trained following an online mini-batch variational approach. The optimal number of topics was set analyzing the values of a topic coherence measure, based on the normalized pointwise mutual information, across multiple validation K-folds. Our results support the presence of 15 key topics latent in free text dispatcher observations, related with: ambulance request; chest pain and heart attack; respiratory distress; head falls and blows; fever, chills, vomiting and diarrhea; heart failure; syncope; limb injuries; public service body request; thoracic and abdominal pain; stroke and blood pressure abnormalities; pill intake; diabetes; bleeding; consciousness. The discovery of these topics implies the automatic characterization of a huge volume of complex unstructured data containing relevant information linked to emergency medical call incidents. Hence, results from this work could lead to the update of structured emergency triage algorithms to directly include this latent information in the triage process, resulting in a positive impact in patient wellbeing and health services sustainability.

Keywords: Medical emergencies; emergency medical calls; emergency medical dispatch; latent dirichlet allocation; natural language processing; topic discovery.

MeSH terms

  • Ambulances
  • Emergency Medical Dispatch*
  • Emergency Medical Service Communication Systems
  • Emergency Medical Services*
  • Humans
  • Retrospective Studies
  • Triage