In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.
Keywords: Epilepsy; Gene; Genotype; Multidisciplinary meetings; Phenotype.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.