Transgene expression of Stanniocalcin-1 provides sustained intraocular pressure reduction by increasing outflow facility

PLoS One. 2022 May 31;17(5):e0269261. doi: 10.1371/journal.pone.0269261. eCollection 2022.

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide. Therapies for glaucoma are directed toward reducing intraocular pressure (IOP), the leading risk factor and only reliable therapeutic target via topical medications or with procedural intervention including laser or surgery. Though topical therapeutics are typically first line, less than 50% of patients take drops as prescribed. Sustained release technologies that decrease IOP for extended periods of time are being examined for clinical use. We recently identified Stanniocalcin-1, a naturally occurring hormone, as an IOP-lowering agent. Here, we show that a single injection into the anterior chamber of mice with an adeno-associated viral vector containing the transgene of stanniocalcin-1 results in diffuse and sustained expression of the protein and produces IOP reduction for up to 6 months. As the treatment effect begins to wane, IOP-lowering can be rescued with a repeat injection. Aqueous humor dynamic studies revealed an increase in outflow facility as the mechanism of action. This first-in-class therapeutic approach has the potential to improve care and reduce the rates of vision loss in the 80 million people worldwide currently affected by glaucoma.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Glaucoma* / drug therapy
  • Glaucoma* / genetics
  • Glycoproteins
  • Humans
  • Intraocular Pressure
  • Mice
  • Ocular Hypotension*
  • Tonometry, Ocular
  • Transgenes

Substances

  • Glycoproteins
  • teleocalcin