It is urgently needed to find reliable biofluid biomarkers for early diagnosis of Parkinson's disease in order to achieve better treatment. Promising biomarkers can be found in Parkinson's disease-related glycoproteins as aberrant protein glycosylation plays an important role in disease progression. However, current information on serum N-glycoproteomic changes in Parkinson's disease is still limited. Here, we used glycoproteomics methods, which combine the solid-phase chemoenzymatic method, lectin affinity chromatography, and hydrophilic interaction chromatography with high-resolution mass spectrometry, to analyze the glycans, glycosites, and intact glycopeptides of serum. Increased abundance of glycans containing core fucose, sialic acid, and bisecting N-acetyl glucosamine was detected at the overall glycan level and also at specific glycosites of glycopeptides. Five Parkinson's disease-associated proteins with this type of N-glycosylation changes were also identified. We propose that the revealed site-specific N-glycosylation changes in serum can be potential biomarkers for Parkinson's disease.
Keywords: Parkinson’s disease; biomarker; glycosylation; mass spectrometry; serum.