VOC-alarm: mutation-based prediction of SARS-CoV-2 variants of concern

Bioinformatics. 2022 Jul 11;38(14):3549-3556. doi: 10.1093/bioinformatics/btac370.

Abstract

Summary: Mutation is the key for a variant of concern (VOC) to overcome selective pressures, but this process is still unclear. Understanding the association of the mutational process with VOCs is an unmet need. Motivation: Here, we developed VOC-alarm, a method to predict VOCs and their caused COVID surges, using mutations of about 5.7 million SARS-CoV-2 complete sequences. We found that VOCs rely on lineage-level entropy value of mutation numbers to compete with other variants, suggestive of the importance of population-level mutations in the virus evolution. Thus, we hypothesized that VOCs are a result of a mutational process across the globe. Results: Analyzing the mutations from January 2020 to December 2021, we simulated the mutational process by estimating the pace of evolution, and thus divided the time period, January 2020-March 2022, into eight stages. We predicted Alpha, Delta, Delta Plus (AY.4.2) and Omicron (B.1.1.529) by their mutational entropy values in the Stages I, III, V and VII with accelerated paces, respectively. In late November 2021, VOC-alarm alerted that Omicron strongly competed with Delta and Delta plus to become a highly transmissible variant. Using simulated data, VOC-alarm also predicted that Omicron could lead to another COVID surge from January 2022 to March 2022.

Availability and implementation: Our software implementation is available at https://github.com/guangxujin/VOC-alarm.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Humans
  • Mutation
  • SARS-CoV-2* / genetics
  • Software

Supplementary concepts

  • SARS-CoV-2 variants