Diammonium-Mediated Perovskite Film Formation for High-Luminescence Red Perovskite Light-Emitting Diodes

Adv Mater. 2022 Jul;34(30):e2202042. doi: 10.1002/adma.202202042. Epub 2022 Jun 22.

Abstract

3D mixed-halide perovskite-based red emitters combine excellent charge-transport characteristics with simple solution processing and good film formation; however, light-emitting diodes (LEDs) based on these emitters cannot yet outperform their nanocrystal counterparts. Here the use of diammonium halides in regulating the formation of mixed bromide-iodide perovskite films is explored. It is found that the diammonium cations preferentially bond to Pb-Br, rather than Pb-I, octahedra, promoting the formation of quasi-2D phases. It is proposed that the perovskite formation is initially dominated by the crystallization of the thermodynamically more favorable 3D phase, but, as the solution gets depleted from the regular A cations, thin shells of amorphous quasi-2D perovskites form. This leads to crystalline perovskite grains with efficiently passivated surfaces and reduced lattice strain. As a result, the diammonium-treated perovskite LEDs demonstrate a record luminance (10745 cd m-2 ) and half-lifetime among 3D perovskite-based red LEDs.

Keywords: film formation; high luminance; perovskite light-emitting diodes; stability.