The cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster, SAM, and Cbl to carry out remarkable catalytic feats in a large number of biosynthetic pathways. However, despite the abundance of annotated Cbl-dependent radical SAM enzymes, relatively few molecular details exist regarding how these enzymes function. Traditionally, challenges associated with purifying and reconstituting Cbl-dependent radical SAM enzymes have hindered biochemical studies aimed at elucidating the structures and mechanisms of these enzymes. Herein, we describe a bottom-up approach that was used to crystallize OxsB, learn about the overall architecture of a Cbl-dependent radical SAM enzyme, and facilitate mechanistic studies. We report lessons learned from the crystallization of different states of OxsB, including the apo-, selenomethionine (SeMet)-labeled, and fully reconstituted form of OxsB that has a [4Fe-4S] cluster, SAM, and Cbl bound. Further, we suggest that, when appropriate, this bottom-up method can be used to facilitate studies on enzymes in this class for which there are challenges associated with purifying and reconstituting the active enzyme.
Keywords: Cobalamin; Cobalamin-dependent radical SAM; Fe-S cluster; Metalloprotein; Natural products; Oxetanocin A; Radical SAM; S-adenosylmethionine; Vitamin B12; X-ray crystallography.
Copyright © 2022 Elsevier Inc. All rights reserved.