High-order harmonics generation in the laser-induced plasmas produced on the surfaces of lead-free perovskites is studied. We analyze the harmonics generation in (CH3NH3)2CuCl4 and (CH3NH3)2CuBr4 plasmas during their ablation by the femtosecond, picosecond, and nanosecond pulses. The modifications of the high-order harmonics spectra are studied using the -color pump scheme (800 nm and 400 nm, 40 fs pulses). The influence of the variations of laser chirp and pulse duration on the dynamics of high-order harmonics generation is examined. The spectral shift, chirp-related harmonic cutoff scaling, and the role of the pulse duration of converting and heating laser radiation are examined at different conditions of plasma formation and harmonic generation. The dependencies of the pulse duration and the fluence of heating pulses on the harmonic's blue shift are found. The effect of harmonics broadening and splitting on the two red- and blue-shifted components is demonstrated.
© 2022. The Author(s).