Beclin1 haploinsufficiency compromises mesenchymal stem cell-offered cardioprotection against myocardial infarction

Cell Regen. 2022 Jun 2;11(1):21. doi: 10.1186/s13619-022-00121-y.

Abstract

Mesenchymal stem cells (MSCs)-based therapy has displayed some promises in ischemia heart diseases although its efficacy may be affected by changes in surrounding environments. This study evaluated the role of autophagy insufficiency using Beclin1 haploinsufficiency (BECN+/-) on intra-myocardial MSC transplantation-evoked effect against myocardial infarction. Donor MSCs from C57BL/6 mice were labelled with cell-tracker CM Dil and were delivered into LV free wall adjacent to infarct region in wild-type (WT) and BECN+/- recipient mice following ligation of left main coronary artery (MI-MSCs). Ten days following MI, myocardial function was assessed using echocardiography. Cardiomyocyte contractility and intracellular Ca2+ were monitored using cardiomyocytes from the area-at-risk adjacent to infarct. CM-Dil labeled cells were tracked in MSCs recipient mice using fluorescence microscopy. Lectin, Masson trichrome staining and Western blot analysis were employed to determine cardiomyocyte area, scar fibrosis, apoptosis and inflammation. MI insult triggered scar fibrosis, LV chamber dilation, decreased fractional shortening, ejection fraction, cardiomyocyte shortening, maximal velocity of shortening and relengthening as well as prolonged relengthening, which were abrogated or attenuated by MSCs therapy in WT but not BECN+/- mice. MI decreased intracellular Ca2+ rise and decay in response to electrical stimuli without affecting resting intracellular Ca2+, which were reconciled by MSCs in WT but not BECN+/- mice. MSCs further attenuated MI-induced mitochondrial ultrastructural injury, apoptosis, inflammation and autophagy defects in peri-infarct area in WT but not BECN+/- mice. Collectively, our results suggested that autophagy insufficiency dampened in MSCs-elicited cardioprotection associated with dampened apoptosis and inflammation.

Keywords: Apoptosis; Autophagy; Beclin1; Contraction; MSCs; Myocardial infarction.