Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers

ACS Macro Lett. 2018 Aug 21;7(8):909-915. doi: 10.1021/acsmacrolett.8b00420. Epub 2018 Jul 12.

Abstract

Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required.