Carbon quantum dots (CQDs) are highly promising to be applied in light-emitting, chemosensing, and other cutting-edge domains. Herein, we successfully fabricate high-quality full-color CQDs under unprecedentedly low temperature and pressure (85°C, 1.88 bar). Stable and narrow fluorescent emissions ranging from blue to green and red light were realized by simple amine engineering, which were further mixed into white-light CQDs with the absolute photoluminescent quantum yield reaching 19.2%. The average mass yield of the CQDs reached 69.0%. The optical performances demonstrated that the CQDs possessed uniform luminescent centers and dominant radiative decay channels. Component analysis further suggested that dehydrated condensation between carboxyl and amine groups directed the growth of the CQDs. By utilizing the CQDs, full-color light-emitting diodes and logic gate sensors were developed. This study paves an important step for promoting the application of CQDs by providing an energy-efficient, safe, and productive synthetic strategy.
Keywords: materials synthesis; physics; quantum phenomena.
© 2022 The Author(s).