Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation

Nat Chem Biol. 2022 Sep;18(9):963-971. doi: 10.1038/s41589-022-01059-7. Epub 2022 Jun 8.

Abstract

Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-CoV-2. Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) protein, enabling virus-host membrane fusion and infection of the airways. We present here a recombinant production strategy for enzymatically active TMPRSS2 and characterization of its matured proteolytic activity, as well as its 1.95 Å X-ray cocrystal structure with the synthetic protease inhibitor nafamostat. Our study provides a structural basis for the potent but nonspecific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that explain specificity. TMPRSS2 cleaved SARS-CoV-2 S protein at multiple sites, including the canonical S1/S2 cleavage site. We ranked the potency of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.4 nM to 120 µM and determined inhibitor mechanisms of action, providing the groundwork for drug development efforts to selectively inhibit TMPRSS2.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • COVID-19*
  • Humans
  • Peptide Hydrolases
  • SARS-CoV-2*
  • Serine Endopeptidases / metabolism*
  • Spike Glycoprotein, Coronavirus / genetics
  • Spike Glycoprotein, Coronavirus / metabolism
  • Virus Internalization

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Peptide Hydrolases
  • Serine Endopeptidases
  • TMPRSS2 protein, human