By the year 2050, the world's elderly population may increase exponentially, raising the rate of disease characteristic of this group, such as prostate cancer (PCa) and benign prostatic hyperplasia (BPH). Prostate disorders have a multifactorial etiology, especially age and genetic factors. Currently, PCa is the second most frequent neoplasm in the male population worldwide. The fibromodulin gene encodes a small leucine-rich proteoglycan (SLRP) which acts in the collagen fibrillogenesis pathway, cell adhesion, and modulation of TGF-β signaling pathways, which has been recently associated with PCa. The present study sequenced the coding region of the FMOD in a sample of 44 PCa, 90 BPH, and 82 controls from a Brazilian population, and the results identified 6 variants: 2 missenses (p.(Tyr42Ser) and p.(Pro24Ala)); 3 synonymous (p.(His253=), p.(Asn353=), and p.(Glu79=)); and 1 intronic (c.980-114A>G). Of these, p.(Tyr42Ser), p.(Pro24Ala), and p.(Asn353=) are rare variants, and p.(Tyr42Ser) was predicted as potential pathogenic by the algorithms used here, in addition to not being observed in controls, suggesting that may be a potential biomarker for development of PCa and BPH. In conclusion, we identified for the first time, in Brazilian individuals with PCa and BPH, a potentially pathogenic variant in the analysis of FMOD gene. Further studies are needed to investigate the deleterious effect of this variant on the structure and/or function of the FMOD protein.
Copyright © 2022 Tamara Silva et al.