Background and aim: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception.
Methods: Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples.
Results: We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST.
Discussion and conclusion: Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.
Keywords: Cortisol; Female; Gut permeability; Hormonal contraceptives; Male; Microbiota; Pain sensitivity; Pain threshold.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.