Quantitative Analysis of White Matter Hyperintensity: Comparison of Magnetic Resonance Imaging Image Analysis Software

J Stroke Cerebrovasc Dis. 2022 Aug;31(8):106555. doi: 10.1016/j.jstrokecerebrovasdis.2022.106555. Epub 2022 Jun 9.

Abstract

Objective: White matter hyperintensity (WMH), defined as abnormal signals on magnetic resonance imaging (MRI), is an important clinical indicator of aging and dementia. Although MRI image analysis software can automatically detect WMH, the quantitative accuracy of periventricular hyperintensity (PVH) and deep white matter hyperintensity (DWMH) is unknown.

Materials and methods: This study was a sub-analysis of MRI data from an ongoing hospital-based prospective cohort study (the Gimlet study). Between March 2016 and March 2017, we enrolled patients who visited our memory clinic and agreed to undergo medical assessments of cognitive function and fecal examination to study the gut microbiome. Participants with a history of stroke were excluded. WMH was independently quantitatively analyzed using two MRI imaging analysis software modalities: SNIPER and FUSION. Intraclass correlation coefficients and the mean difference in volume were calculated and compared between modalities.

Results: The data of 87 patients (49 women, mean age 74.8 ± 7.9 years) were analyzed. Both total WMH and DWMH volumes obtained using FUSION were greater (p < 0.001), and PVH volume was smaller (p < 0.001) than those obtained using SNIPER. Intraclass correlation coefficients for the lesion measurements of WMH, PVH, and DWMH between the different software were 0.726 (p < 0.001), 0.673 (p < 0.001), and 0.048 (p = 0.231), respectively.

Conclusions: There were significant differences in the quantitative data of WMH between the two MRI imaging analysis software modalities. Thus, care should be taken for quantitative assessments of WMH.

Keywords: Intraclass correlation coefficients; MRI; Quantification; White matter hyperintensity.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Brain / diagnostic imaging
  • Brain / pathology
  • Female
  • Humans
  • Leukoaraiosis* / pathology
  • Magnetic Resonance Imaging / methods
  • Prospective Studies
  • Software
  • White Matter* / diagnostic imaging
  • White Matter* / pathology