Mandating Limits on Workload, Duty, and Speed in Radiology

Radiology. 2022 Aug;304(2):274-282. doi: 10.1148/radiol.212631. Epub 2022 Jun 14.

Abstract

Research has not yet quantified the effects of workload or duty hours on the accuracy of radiologists. With the exception of a brief reduction in imaging studies during the 2020 peak of the COVID-19 pandemic, the workload of radiologists in the United States has seen relentless growth in recent years. One concern is that this increased demand could lead to reduced accuracy. Behavioral studies in species ranging from insects to humans have shown that decision speed is inversely correlated to decision accuracy. A potential solution is to institute workload and duty limits to optimize radiologist performance and patient safety. The concern, however, is that any prescribed mandated limits would be arbitrary and thus no more advantageous than allowing radiologists to self-regulate. Specific studies have been proposed to determine whether limits reduce error, and if so, to provide a principled basis for such limits. This could determine the precise susceptibility of individual radiologists to medical error as a function of speed during image viewing, the maximum number of studies that could be read during a work shift, and the appropriate shift duration as a function of time of day. Before principled recommendations for restrictions are made, however, it is important to understand how radiologists function both optimally and at the margins of adequate performance. This study examines the relationship between interpretation speed and error rates in radiology, the potential influence of artificial intelligence on reading speed and error rates, and the possible outcomes of imposed limits on both caseload and duty hours. This review concludes that the scientific evidence needed to make meaningful rules is lacking and notes that regulating workloads without scientific principles can be more harmful than not regulating at all.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Artificial Intelligence
  • COVID-19*
  • Humans
  • Pandemics
  • Radiologists
  • Radiology*
  • United States
  • Workload