Entangling Quantum Generative Adversarial Networks

Phys Rev Lett. 2022 Jun 3;128(22):220505. doi: 10.1103/PhysRevLett.128.220505.

Abstract

Generative adversarial networks (GANs) are one of the most widely adopted machine learning methods for data generation. In this work, we propose a new type of architecture for quantum generative adversarial networks (an entangling quantum GAN, EQ-GAN) that overcomes limitations of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, the EQ-GAN converges to the Nash equilibrium by performing entangling operations between both the generator output and true quantum data. In the first multiqubit experimental demonstration of a fully quantum GAN with a provably optimal Nash equilibrium, we use the EQ-GAN on a Google Sycamore superconducting quantum processor to mitigate uncharacterized errors, and we numerically confirm successful error mitigation with simulations up to 18 qubits. Finally, we present an application of the EQ-GAN to prepare an approximate quantum random access memory and for the training of quantum neural networks via variational datasets.