Airborne transmission arises through the inhalation of aerosol droplets exhaled by an infected person and is now thought to be the primary transmission route of COVID-19. Thus, maintaining adequate indoor air quality levels is vital in mitigating the spread of the airborne virus. The cause-and-effect flow of various agents involved in airborne transmission of viruses has been investigated through a systematic literature review. It has been identified that the airborne virus can stay infectious in the air for hours, and pollutants such as particulate matter (PM10, PM2.5), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs) and other air pollutants can enhance the incidence, spread and mortality rates of viral disease. Also, environmental quality parameters such as humidity and temperature have shown considerable influence in virus transmission in indoor spaces. The measures adopted in different research studies that can curb airborne transmission of viruses for an improved Indoor Air Quality (IAQ) have been collated for their effectiveness and limitations. A diverse set of building strategies, components, and operation techniques from the recent literature pertaining to the ongoing spread of COVID-19 disease has been systematically presented to understand the current state of techniques and building systems that can minimize the viral spread in built spaces This comprehensive review will help architects, builders, realtors, and other organizations improve or design a resilient building system to deal with COVID-19 or any such pandemic in the future.
Keywords: Airborne transmission; COVID-19; Health policy; Indoor air quality; Indoor environmental quality; SARS-CoV-2; Ventilation.
Copyright © 2022 Elsevier Inc. All rights reserved.