Cullin-independent recognition of HHARI substrates by a dynamic RBR catalytic domain

Structure. 2022 Sep 1;30(9):1269-1284.e6. doi: 10.1016/j.str.2022.05.017. Epub 2022 Jun 17.

Abstract

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.

Keywords: 4EHP; AriH1; HDX-MS; HHARI; RING-between-RING; XL-MS; mono-ubiquitination; ubiquitin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalytic Domain
  • Cullin Proteins* / metabolism
  • Ubiquitin* / metabolism
  • Ubiquitin-Protein Ligases / chemistry
  • Ubiquitination

Substances

  • Cullin Proteins
  • Ubiquitin
  • Ubiquitin-Protein Ligases