Identification of aberrant transcription termination at specific gene loci with DNA hypomethylated transcription termination sites caused by DNA methyltransferase deficiency

Genes Genet Syst. 2022 Oct 18;97(3):139-152. doi: 10.1266/ggs.21-00092. Epub 2022 Sep 6.

Abstract

CpG methylation of genomic DNA is a well-known repressive epigenetic marker in eukaryotic transcription, and DNA methylation of promoter regions is correlated with gene silencing. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions, including transcription termination sites (TTSs), during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we performed bioinformatics analysis using six pre-existing Dnmt-/- mouse cell datasets: four types of neurons (three Dnmt3a-/- and one Dnmt1-/- mutants) and two types of embryonic fibroblasts (MEFs) (Dnmt3a-/- and Dnmt3b-/- mutants). Combined analyses using methylome and transcriptome data revealed that read counts downstream of hypomethylated TTSs were increased in three types of neurons (two Dnmt3a-/- and one Dnmt1-/- mutants). Among these, an increase in chimeric transcripts downstream of the TTSs was observed in Dnmt3a-/- mature olfactory sensory neurons and Dnmt3a-/- agouti-related peptide (protein)-producing neurons, thereby indicating that read-through occurs in hypomethylated TTSs at specific gene loci in these two mutants. Conversely, in Dnmt3a-/- MEFs, we detected reductions in read counts downstream of hypomethylated TTSs. These results indicate that the hypomethylation of TTSs can both positively and negatively regulate transcription termination, dependent on Dnmt and cell types. This study is the first to identify the aberrant termination of transcription at specific gene loci with DNA hypomethylated TTSs attributable to Dnmt deficiency.

Keywords: DNA methylation; Dnmt3a; chimeric transcript; read-through transcript; transcription termination.

MeSH terms

  • Animals
  • DNA
  • DNA (Cytosine-5-)-Methyltransferases* / genetics
  • DNA (Cytosine-5-)-Methyltransferases* / metabolism
  • DNA Methylation*
  • DNA Methyltransferase 3A
  • Epigenomics
  • Mice
  • Promoter Regions, Genetic
  • Transcription, Genetic

Substances

  • DNA (Cytosine-5-)-Methyltransferases
  • DNA
  • DNA Methyltransferase 3A