Covalent adaptable networks (CANs) exhibit recyclability such as reprocessing, but it's a challenge to address the contradiction between reprocessing rate and performance. Here, pendent aliphatic chain anhydride monoesters are innovatively introduced into epoxy CANs based on transesterification, which efficiently accelerates the reprocessing without sacrificing thermal and mechanical properties. The transesterification rate is raised on account of the flexible aliphatic chain-promoted segment movement and dynamic transfer auto-catalysis. When the carbon number reflecting the length of the pendent chain is 12, the epoxy CAN exhibits the fastest stress relaxation or reprocessing. Computation via molecular dynamics simulation demonstrates that the increased segmental mobility from the pendent aliphatic chains contributes to enhanced reprocessability. Interestingly, the crystallization of the pendent aliphatic chains maintains or even improves the thermal and mechanical properties. Thus, introducing a flexible and crystallizable aliphatic side chain is an innovative and efficient approach to accelerate dynamic reactions and network arrangement while improving performance.
Keywords: covalent adaptable networks; crystallization; epoxy thermosets; segmental motion; transesterification.
© 2022 Wiley-VCH GmbH.