Our understanding of atmosphere formation essentially relies on noble gases and their isotopes, with xenon (Xe) being a key tracer of the early planetary stages. A long-standing issue, however, is the origin of atmospheric depletion in Xe1 and its light isotopes for the Earth2 and Mars3. Here we report that feldspar and olivine samples confined at high pressures and high temperature with diluted Xe and krypton (Kr) in air or nitrogen are enriched in heavy Xe isotopes by +0.8 to +2.3‰ per AMU, and strongly enriched in Xe over Kr. The upper +2.3‰ per AMU value is a minimum because quantitative trapping of unreacted Xe, either in bubbles or adsorbed on the samples, is likely. In light of these results, we propose a scenario solving the missing Xe problem that involves multiple magma ocean stage events at the proto-planetary stage, combined with atmospheric loss. Each of these events results in trapping of Xe at depth and preferential retention of its heavy isotopes. In the case of the Earth, the heavy Xe fraction was later added to the secondary CI chondritic atmosphere through continental erosion and/or recycling of a Hadean felsic crust.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.