The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Keywords: Dynamic photothrombosis induction; Localized target ischemic stroke model; Minimal invasive model; Photoacoustic microscopy; Target blood vessel monitoring.
© 2022 The Authors.