In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Keywords: IGRT; MR-guided radiotherapy; MRI; adaptive radiotherapy; diffusion-weighted imaging; head and neck cancer; oropharyngeal cancer.