Reproductive Biology of Dry Grassland Specialist Ranunculus illyricus L. and Its Implications for Conservation

Biology (Basel). 2022 Jun 6;11(6):873. doi: 10.3390/biology11060873.

Abstract

Ranunculus illyricus, a component of xerothermic grasslands, is a declining species and deserves active conservation treatments in many countries preceded by studies on the biology of its reproduction. So far, our knowledge of R. illyricus, a species with two modes of reproduction, has been fragmentary. The purpose of the studies presented here was to describe the annual development cycle of R. illyricus with particular emphasis on the production of underground tuber clusters that serve as vegetative propagation. Based on three-year-long observations in an ex situ collection, the efficiency of vegetative propagation was estimated and compared with the efficiency of generative propagation. It was found that in 3 years the best clones could produce up to 57 progeny clusters followed by flowering specimens in the first season. Meanwhile, the high potential for generative reproduction was suppressed by many limitations including fruit setting, the germination capacity of seeds, seedling survival rate, and additionally, the first flowering plant was observed only in the third year. It seems that the efficiency of vegetative propagation of this species can be higher than the efficiency of generative propagation. Moreover, vegets bloomed in the first year after emergence, whereas the first plant of generative origin was observed to bloom only after 3 years. A large proportion of individuals of vegetative origin can negatively affect the genetic diversity of the population but their survival rate against competing plants is higher. To enhance the existing populations or to create new ones, it would be best to use plants derived from clonal propagation of genets carried out in ex situ conditions.

Keywords: Illyrian buttercup; clonal plants; progeny plants; tubers.

Grants and funding

This research was funded by the Ministry of Education and Science (SUB/2021-22-050012-D011) to support the maintenance and development of the research potential of the Department of Botany, Physiology and Plant Protection.