In Vitro Activity of Cefiderocol against Extensively Drug-Resistant Pseudomonas aeruginosa: CANWARD, 2007 to 2019

Microbiol Spectr. 2022 Aug 31;10(4):e0172422. doi: 10.1128/spectrum.01724-22. Epub 2022 Jun 27.

Abstract

Cefiderocol was evaluated by broth microdilution versus 1,050 highly antimicrobial-resistant Pseudomonas aeruginosa clinical isolates from the CANWARD study (2007 to 2019). Overall, 98.3% of isolates remained cefiderocol susceptible (MIC, ≤4 μg/mL), including 97.4% of extensively drug-resistant (XDR) (n = 235) and 97.9% of multidrug-resistant (MDR) (n = 771) isolates. Most isolates testing not susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem-relebactam remained susceptible to cefiderocol. In vitro data suggest that cefiderocol may be a treatment option for infections caused by MDR and XDR P. aeruginosa. IMPORTANCE After testing cefiderocol against a large collection of clinical isolates of highly antimicrobial-resistant Pseudomonas aeruginosa, we report that cefiderocol is active versus 97.4% of extensively drug-resistant (XDR) and 97.9% of multidrug-resistant (MDR) (n = 771) isolates. These data show that cefiderocol may be a treatment option for infections caused by MDR and XDR P. aeruginosa.

Keywords: antibacterial; bacterial; cephalosporin; susceptibility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Anti-Infective Agents* / therapeutic use
  • Cefiderocol
  • Cephalosporins / pharmacology
  • Cephalosporins / therapeutic use
  • Drug Resistance, Multiple, Bacterial
  • Humans
  • Microbial Sensitivity Tests
  • Pseudomonas Infections* / drug therapy
  • Pseudomonas aeruginosa

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Cephalosporins