Reversible multielectron-transfer materials are of considerable interest because of the potential impact to advance present electrochemical energy storage technology by boosting energy density. To date, a few oxide-based materials can reach an electron-transfer number per metal-cation (eM ) larger than 2 upon a (de)intercalation mechanism. However, these materials suffer from degradation due to irreversible rearrangements of the cation-oxygen bonds, and are based on precious metals, for example, Ir and Ru. Hence, a design of the non-oxide-based reversible multielectron-transfer materials with abundant elements can provide a promising alternative. Herein, it is demonstrated that the bis(diimino)copper framework can show eM = 3.5 with cation/anion co-redox mechanism together with a dual-ion mechanism. In this study, the role of the cation-anion interactions is unveiled by using an experiment/theory collaboration applied to a series of the model non-oxide abundant electrode systems based on different metal-nitrogen bonds. These models provide designer multielectron-transfer due to the tunable π-d conjugated electronic structures. It is found that the Cu-nitrogen bonds show a unique reversible rearrangement upon Li-intercalation, and this process responds to acquire a significant reversible multielectron-transfer. This work provides new insights into the affordable multielectron-transfer electrodes and uncovers an alternative strategy to advance the electrochemical energy storage reactions.
Keywords: 2D coordination frameworks; abundant elements; carbon- and nitrogen-frameworks; multielectron-transfer; reversible energy storage; sustainable materials.
© 2022 Wiley-VCH GmbH.