Purpose: Objective of this study was to compare high-pitch prospective electrocardiogram (ECG)-gated computed tomography (CT) pulmonary angiography (HP-PECG-gated CTPA) with standard-pitch non-ECG-gated CT pulmonary angiography (SP-NECG-gated CTPA) on 128-slice dual-source CT (DSCT) for the detection of subsegmental pulmonary embolism (SSPE) in patients suspected of acute pulmonary embolism (APE) with radiation and contrastoptimized protocols. Cardiac-related motion artefacts, lung image quality, and quantitative parameter (pulmonary arterial enhancement, radiation exposure, and contrast) volumes were also compared.
Material and methods: This prospective study enrolled 87 patients clinically suspected of APE and randomly distributed to either group by software. Two radiologists blinded to each other interpreted the images for assessment of SSPE, image quality, and quantitative parameters.
Results: SSPE was diagnosed in 15/44 (34.09%) patients in HP-PECG-gated CTPA, in comparison to 8/43 (18.60%) patients in SP-NECG-gated CTPA. Cardiac motion-related artefacts (blurring of bronchovascular structures and double-line artefacts) were statistically significantly less, with p-value < 0.05. Lung image quality was also better, with p-value < 0.001. Effective radiation dose and contrast volume in HP-PECG-gated CTPA were (2.54 ± 0.80 mSv, 45.05 ± 6 ml) versus SP-NECG-gated CTPA (3.17 ± 1.20 mSv, 74.19 ± 7.63 ml) with p-values of 0.007 and 0.001, respectively.
Conclusions: Radiation and contrast volume-optimized HP-PECG-gated CTPA provides reduced cardiac motion related artefacts of pulmonary arteries, which allows enhanced detection of SSPE. It also provides better image quality of lung and parenchyma with lower radiation exposure and less contrast volume.
Keywords: ECG-gated; cardiac motion artefacts; high pitch; pulmonary CT angiography; subsegmental pulmonary embolism.
Copyright © Polish Medical Society of Radiology 2022.